Understanding RxJS’s Observable, Observer, Subscription and Observable.create() function
Observable is a stream of data/events to be observed/processed.
Observer is as the name itself suggests, a consumer of the Observable stream.
Subscription is a relationship between a Observable and a Observer that is returned by Observable.subscribe() function. A subscription can be unsubscribed/terminated by invoking unsubscribe() function on the relationship itself.
Observable.create() function is an alias of Observable’s constructor function. It takes a function named subscribe
as its parameter, and the subscribe
function takes a subscriber
as its parameter. Later you’ll see that subscriber
is actually the Observer
we used in subscription
=Observable.subscribe(Observer).
See the source code below from RxJS github
repo:
Observable.create() definition:
// HACK: Since TypeScript inherits static properties too, we have to
// fight against TypeScript here so Subject can have a different static create signature
/**
* Creates a new cold Observable by calling the Observable constructor
* @static true
* @owner Observable
* @method create
* @param {Function} subscribe? the subscriber function to be passed to the Observable constructor
* @return {Observable} a new cold observable
* @nocollapse
* @deprecated use new Observable() instead
*/
static create: Function = <T>(subscribe?: (subscriber: Subscriber<T>) => TeardownLogic) => {
return new Observable<T>(subscribe);
}
Observable’s constructor() definition:
/**
* @constructor
* @param {Function} subscribe the function that is called when the Observable is
* initially subscribed to. This function is given a Subscriber, to which new values
* can be `next`ed, or an `error` method can be called to raise an error, or
* `complete` can be called to notify of a successful completion.
*/
constructor(subscribe?: (this: Observable<T>, subscriber: Subscriber<T>) => TeardownLogic) {
if (subscribe) {
this._subscribe = subscribe;
}
}
Observable’s subscribe() function definition:
/**
* Invokes an execution of an Observable and registers Observer handlers for notifications it will emit.
*
* <span class="informal">Use it when you have all these Observables, but still nothing is happening.</span>
*
* `subscribe` is not a regular operator, but a method that calls Observable's internal `subscribe` function. It
* might be for example a function that you passed to Observable's constructor, but most of the time it is
* a library implementation, which defines what will be emitted by an Observable, and when it be will emitted. This means
* that calling `subscribe` is actually the moment when Observable starts its work, not when it is created, as it is often
* the thought.
*
* Apart from starting the execution of an Observable, this method allows you to listen for values
* that an Observable emits, as well as for when it completes or errors. You can achieve this in two
* of the following ways.
*
* The first way is creating an object that implements {@link Observer} interface. It should have methods
* defined by that interface, but note that it should be just a regular JavaScript object, which you can create
* yourself in any way you want (ES6 class, classic function constructor, object literal etc.). In particular do
* not attempt to use any RxJS implementation details to create Observers - you don't need them. Remember also
* that your object does not have to implement all methods. If you find yourself creating a method that doesn't
* do anything, you can simply omit it. Note however, if the `error` method is not provided, all errors will
* be left uncaught.
*
* The second way is to give up on Observer object altogether and simply provide callback functions in place of its methods.
* This means you can provide three functions as arguments to `subscribe`, where the first function is equivalent
* of a `next` method, the second of an `error` method and the third of a `complete` method. Just as in case of Observer,
* if you do not need to listen for something, you can omit a function, preferably by passing `undefined` or `null`,
* since `subscribe` recognizes these functions by where they were placed in function call. When it comes
* to `error` function, just as before, if not provided, errors emitted by an Observable will be thrown.
*
* Whichever style of calling `subscribe` you use, in both cases it returns a Subscription object.
* This object allows you to call `unsubscribe` on it, which in turn will stop the work that an Observable does and will clean
* up all resources that an Observable used. Note that cancelling a subscription will not call `complete` callback
* provided to `subscribe` function, which is reserved for a regular completion signal that comes from an Observable.
*
* Remember that callbacks provided to `subscribe` are not guaranteed to be called asynchronously.
* It is an Observable itself that decides when these functions will be called. For example {@link of}
* by default emits all its values synchronously. Always check documentation for how given Observable
* will behave when subscribed and if its default behavior can be modified with a `scheduler`.
*
* ## Example
* ### Subscribe with an Observer
* ```ts
* import { of } from 'rxjs';
*
* const sumObserver = {
* sum: 0,
* next(value) {
* console.log('Adding: ' + value);
* this.sum = this.sum + value;
* },
* error() {
* // We actually could just remove this method,
* // since we do not really care about errors right now.
* },
* complete() {
* console.log('Sum equals: ' + this.sum);
* }
* };
*
* of(1, 2, 3) // Synchronously emits 1, 2, 3 and then completes.
* .subscribe(sumObserver);
*
* // Logs:
* // "Adding: 1"
* // "Adding: 2"
* // "Adding: 3"
* // "Sum equals: 6"
* ```
*
* ### Subscribe with functions
* ```ts
* import { of } from 'rxjs'
*
* let sum = 0;
*
* of(1, 2, 3).subscribe(
* value => {
* console.log('Adding: ' + value);
* sum = sum + value;
* },
* undefined,
* () => console.log('Sum equals: ' + sum)
* );
*
* // Logs:
* // "Adding: 1"
* // "Adding: 2"
* // "Adding: 3"
* // "Sum equals: 6"
* ```
*
* ### Cancel a subscription
* ```ts
* import { interval } from 'rxjs';
*
* const subscription = interval(1000).subscribe(
* num => console.log(num),
* undefined,
* () => {
* // Will not be called, even when cancelling subscription.
* console.log('completed!');
* }
* );
*
* setTimeout(() => {
* subscription.unsubscribe();
* console.log('unsubscribed!');
* }, 2500);
*
* // Logs:
* // 0 after 1s
* // 1 after 2s
* // "unsubscribed!" after 2.5s
* ```
*
* @param {Observer|Function} observerOrNext (optional) Either an observer with methods to be called,
* or the first of three possible handlers, which is the handler for each value emitted from the subscribed
* Observable.
* @param {Function} error (optional) A handler for a terminal event resulting from an error. If no error handler is provided,
* the error will be thrown as unhandled.
* @param {Function} complete (optional) A handler for a terminal event resulting from successful completion.
* @return {ISubscription} a subscription reference to the registered handlers
* @method subscribe
*/
subscribe(observerOrNext?: PartialObserver<T> | ((value: T) => void),
error?: (error: any) => void,
complete?: () => void): Subscription {
const { operator } = this;
const sink = toSubscriber(observerOrNext, error, complete);
if (operator) {
sink.add(operator.call(sink, this.source));
} else {
sink.add(
this.source || (config.useDeprecatedSynchronousErrorHandling && !sink.syncErrorThrowable) ?
this._subscribe(sink) :
this._trySubscribe(sink)
);
}
if (config.useDeprecatedSynchronousErrorHandling) {
if (sink.syncErrorThrowable) {
sink.syncErrorThrowable = false;
if (sink.syncErrorThrown) {
throw sink.syncErrorValue;
}
}
}
return sink;
}
Here is an example using all these functions above:


The execution result for observer1 is :
observer1.next(1): got value 1
observer1.next(2): got value 2
observer1.next(3): got value 3
observer1.complete: done
observer1.next(4) will never be executed as observer1.complete() is invoked ahead.

The execution result for observer2 is the same. And we define a subscription of Observable and observer2 here just to illustrate that multiple observers will not interfere with each other.